
Automated application’s
user interface visual testing
using static analysis
approach

ŠARŪNAS PACKEVIČIUS ET AL. @ KTU

1

Research
Small increments

Specialized

AI is here to take our jobs

2

Research topics/what we do
Overcoming the Equivalent Mutant Problem: A
Systematic Literature Review and a Comparative
Experiment of Second Order Mutation

GenProg: A Generic Method for Automatic
Software Repair

A Systematic Literature Review of Software
Defect Prediction: Research Trends, Datasets,
Methods and Frameworks

Using Natural Language Processing to
Automatically Detect Self-Admitted Technical
Debt

Automated Checking of Conformance to
Requirements Templates Using Natural Language
Processing

Text Filtering and Ranking for Security Bug
Report Prediction

3

And how we do it

4

When I can get it?
Test-driven development

◦ 12000 BC : OgTheVenerable, holding a raw piece of meat, describes the
process of creating fire to his fellow cavemen, setting their expectations and
a prescription for his own task. The piece of charred meat he held in his hand
afterward is widely regarded as the first passing test case.

◦ 1959 through 1963 : programmers for the Mercury Space Program use a
form of TDD while programming punched cards

Scrum

◦ Hirotaka TakeuchiIkujiro Nonaka, The New New Product Development Game,
Harvard Business Review, January 1986

Well…

5

Research trends
Automatic Software Repair

The Oracle Problem in Software Testing

Software Fault Localization

Defect Prediction

Technical Debt

Persistent Software Errors

6

Software Defect Prediction:
Research Trends, Datasets,
Methods and Frameworks

1. Estimation

2. Association

3.
Classification

4. Clustering

5. Dataset
Analysis

7

KTU Topics
Model Based Testing

GUI Defect Search

Hardware testing
◦ FPGA, VHDL, ….

8

Model Based Testing

9

GUI Testing
Have you ever looked at the app
at thought: something does not
look right here….

Were you able to objectively
describe what’s wrong and how
should it be?

10

Mobile app “features” -
problems
Various device configurations – “well it works on mine, should be ….”

◦ Bad layout, missing, invisible text.

◦ Unreadable texts

Internationalization
◦ Spelling, grammar errors

◦ Automated translation

◦ Poor text style

◦ Messages are not always
“understandable”

11

User interface defects
Layout problems:

◦ Invisible control

◦ Clipped control

◦ Too small control

◦ Misaligned controls

Text problems:
◦ Too small text

◦ Partial text

Image problems:
◦ Bad scaling

◦ Bad resolution

Colour problems:
◦ Hidden control

◦ Not matching colours

◦ Poor colour choice

Application menu problems:
◦ Menu does not fit to a screen/toolbar

◦ Missing icons.

Navigation problems:
◦ Stuck at screen

◦ Wrong window

◦ App crash

◦ Timing problems

12

Experiment
Test 1000 apps.

Log defects

Clasify defects

Define automated testing method

Define defect detection rules

Run rules on 1000 apps.

Compare results – prove that it’s
good.

13

Defects

14

Defects…

15

Defects

16

The proposed method
1. Execute app on many devices.

2 .Take screenshots at each execution step.

3. Search for defects in each screenshot:
• Defined defect classes.

• Defect detection rules per each class.

17

Detected Defects Summary

18

Defect Type English Non-English Phone Tablet Small

Screen

Normal

Screen

Large

Screen

Total

Bad Spelling 1 10 8 3 7 1 3 11

Wasted Space 208 2294 711 1791 546 83 1873 2502

Technical Jargon 260 488 589 159 425 98 225 748

Clipped Text 1842 4426 5800 468 4302 1035 931 6268

Wrong Font Sizes 0 91 3 88 3 0 88 91

Untranslated Text 176 1075 1059 192 550 469 232 1251

Bad Colors 73 210 192 91 118 50 115 283

Bad Scaling 37 284 150 171 128 12 181 321

Low Res Image 8 63 53 18 26 24 21 71

Clipped Control 359 1165 1303 221 1105 94 325 1524

No Margins 120 169 256 33 181 65 43 289

Uncentered 104 323 323 104 278 35 114 427

Unfilled Placeholder 0 30 21 9 17 4 9 30

Bad Margins 194 277 394 77 277 45 149 471

Obscured Control 36 159 193 2 183 9 3 195

No Anti Aliasing 0 6 6 0 6 0 0 6

Empty View 759 2274 2307 726 1115 899 1019 3033

Unreadable Text 19 305 310 14 280 25 19 324

Clashing Background 36 101 110 27 64 37 36 137

Unaligned Controls 92 162 247 7 223 21 10 254

Crowded Controlls 18 89 105 2 105 0 2 107

Obscured Text 115 413 509 19 428 38 62 528

Unlabeled Entry Field 171 349 399 121 234 86 200 520

Not Enough Space 34 285 257 62 205 45 69 319

Missing Text 29 33 43 19 29 4 29 62

Wrong Encoding 0 3 2 1 1 1 1 3

Misaligned Control 0 25 1 24 0 1 24 25

Too Large Control 0 2409 0 2409 0 0 2409 2409

Classification of the user-
interface text defects
Text presentation
defects

19

Classification of the user-
interface text defects
Text semantics
defects

20

Detection of the defects

Sources:
◦ Screenshots

◦ Application window texts

◦ Application texts

Process:

◦ Generate app execution
paths.

◦ Run on many devices.

◦ Take screenshots.

◦ Analyse all screenshots

21

Application Model Parser
Navigation

diagram

Navigation
paths

generator

Navigation
paths

Test data
generator

Test data Tests executor

Devices list

Devices
configurations

Screenshots at each
test step on each

device

Defects
analysator

Defects
database

Detected
defects list

Detection rules

22

Testing example
One small app as showcase

◦ Multilanguage support

◦ iPhone and Android apps

◦ Multiple devices support

23

Testing results

24

Some experiments –
benchmarks (~80 apps)

25

Some findings
Readability, Style:

◦ Attention: for uninstalling Sanity you must revoke those privileges (otherwise the uninstall
processo will fail).

◦ getUseWebViewBackgroundForOverscrollBackground : false

◦ If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program in return for a fee.

◦ I/cr_LibraryLoader(3840): Expected native library version number "51.0.2704.90", actual
native library version number "51.0.2704.90“

◦ Automatically remember last used media volume on disconnect

◦ The app needs access to your contects to tell who messages are from when reading
messages.

Offensive:

◦ Error: invalid name!

Translations:

◦ Naujovinkite, kad vertimas neprisijungus būtų geresnis

26

“Conclusions”
and further work

◦ The method is similar to an automated static analysis.

◦ Provided text presentation and content defects categories and defect types.

◦ Identification of the troubling user interface locations.

◦ The main drawback is long testing time (for images).

◦ What is the optimal subset of mobile devices for testing?

◦ Apps actually do have declared defects and it is possible to find them:
◦ Apps translated automatically.

◦ Partially translated apps.

◦ Spelling.

◦ Hard to understand texts.

27

Questions
Any bugs in presetation?

28

