
Automating Jetpack Compose app 
with Appium Espresso driver

Edvinas Liutvaitis





Jetpack Compose

Modern toolkit for building native android ui.
Why?

● Less Code

● No more XML-based layouts and views 
just one language

● Intuitive

● Declarative Approach

● Accelerate Development



Is, there any alternative in Appium?

Yes, there is- UiAutomator2 still useful

● Semantic tree structure helps 
accessibility service to understand what 
is on the screen.

● Jetpack compose provides semantic 
property called testTag

● Set testTagsAsResourceId = true



The Espresso way



How it works high-level overview

● Android device has 2 apks

○ One for driving the device under test 
(AndroidTest.apk)

○ Second one is App Under Test 
(AUT.apk)

● Driver.apk uses instrumentation when 
talking with AUT.apk

Appium Client

J
S
O
N 
W
P

Automation Code Android Device

AndroidTest. 
apk

AppUnderTest. 
apk

UiAutom
ator2

Instrumentation



Espresso building gradle server

● Set dependencies for compose using 
appium:espressoBuildConfig capability

○ composeVersion

○ additionalAppDependencies

○ additionalAndroidTestDependencies



Espresso to Compose: Appium Settings API

● Use settings api to switch between compose and 
espresso context

○ appium:settings[driver]: “compose” allows 
interaction with Jetpack Compose based 
application interfaces

○ Can be switched back to espresso view at 
any time passing “espresso” keyword



Backdoor extension



Using backdoor extension

● Backdoor can be invoked in 
tree different locations

○ Application

○ Activity

○ Element



Things to know when using backdoor

● Only public methods can be invoked

● When using kotlin need to add open modifier

● If still not able to invoke the method check proguard



Demo


