
In order to get quality - you need to move quickly in small steps so
that we can see the changes, evaluate and understand them
In order to get speed - you need quality, so that when we do make a
change we are not chasing defects

Implementing testing pyramid
by Benas Radzevičius

Counter intuitive finding - there's no tradeoff between
speed and quality

Speed Quality

Maintaining software in a releasable state

New version Acceptance testing

No

Releasable? Releasable versionYes

Production

Lead timeChange

Feedback loop

Continuous Delivery

If we go slower, we build worse software
slower, not better software slower

- Dave Farley

State of DevOps research (2021)

https://services.google.com/fh/files/misc/state-of-devops-2021.pdf

https://services.google.com/fh/files/misc/state-of-devops-2021.pdf

Long lead time creates a lot of inefficiencies:

Hard to triangulate cause of found issues
Working on multiple sprints at the same time -
context switching
Stress
etc...

Development Manual Testing Dev Done

Manual Regression Production

User story

Issues

Lead time: up to 3 weeks

Staging

Up to 2 weeks

Releasable? WeekUp to

3 weeks

Days

Let's get on a journey

"Thor's hammer"

Starting point

Development Manual Testing

Manual RegressionStaging

automated tests

automated tests

...

......

...

Automation
Automating regression through e2e tests

Unit tests

API tests

UI Tests

Manual

Slow deployments

Hard to maintain

False positives

Regression times improved

Faster feedback

But... With more unit tests, we
started experiencing issues...

API tests

Manual

UI Tests

Unit tests

Deterministic
No matter the circumstances, test should

return the same result every time

Concise and simple

So it's not an overhead to write

Durable
So that tests do not broken easily by

changes in the system

Great tests are:

Fast
So we could could know faster when

something is wrong and focus on the fix

API tests

Manual

UI Tests

Unit tests

NO
!!!!

Application size

C
om

pl
ex

tiy

Te
st

main
ten

anc
e

Smaller / more focused
tests

E2E test

Less waste

Test cases

1. MAX(5, 1) = 5
2. M​AX(-5, 1) = 1
3. MAX(1, 1) = 1
4. MAX(1, 5) = 5
5. MAX(-1, -5) = -1
6. MAX() = ERROR at 0
7. MAX(1) = ERROR at 0
8. MAX(a) = ERROR at 4

9. MAX(1, 2, 3, 4) = NO ERROR, ALLOWS MORE THAN 2

ARGS
10. Given {var 1} = 3, then MAX({var 1}, 2) = 3
11. MAX(1+1, 1) = 1
12. 1 + MAX(1, 2) = 3
13. MAX(1, 2) + 1 = 3
14. 1 + MAX(1, 2) + 1 = 4
15. 1 + MAX(a, 2) = ERROR at 8

 ​

Optimization - shift left
Focusing our testing and reducing waste

Huge waste

E2E test

System

Coverage

Do we need so
many end-to-end

tests?

Example

Tested by

Test 1

1. Login as "admin"
2. Open a calculator

3. Enter a formula "MAX(1, 2)"
4. Result should be "2"

Test 2

1. Login as "admin"
2. Open a calculator

3. Enter a formula "MAX(a, 1)"
4. I see an error "Syntax error at: ...a, 1)..."

Test 15

...

...

Coverage

1. Authentication works
2. User is able to navigate to the calculator via

navigation bar

3. Input allows to enter formulas
4. Submit button correctly sends a request to the

backend
5. Error from the backend is shown under the input
6. Syntax error position is bolded

... other examples

1. Syntax error position correctly identified
2. MAX correctly calculates the result
3. Etc...

Same thing
tested multiple
times

Actually what
are we trying to
test

Covers

= MAX(0, {profit}, a) Calculate

Formula

Syntax error at 16: ...a)...

API tests

E2E test

Less waste

1. Usually endpoints have more complex behaviors
2. Might have complex contracts - making it hard to

write

3. API requests more optimal but still expensive when

doing thousands of them

4. Small changes to contracts brake a lot of tests,

even if behavior did not change

API Tests !

How could we focus our tests
on the behavior and avoid

unnecessary dependencies?

{
 "formula": "MAX(1,
2)"
}

{
 "formula": "MAX(1,
2)",
 "result: "2",
 "errorMessage":
null,
 "errorPosition":
null

}

API

Request

Response

More efficient
coverage

API tests

Manual

UI Tests

Unit tests

But...

{
 "cases": [{
 "forecasts": [{
 "year": "2022-01-01T00:00:00Z",
 ...

 }],
 ...

 }],
 "dataModel": {
 "equity": "{initial equity} *
{interests}^{years}",
 "payout": "{shareholding %} * {equity}"

 }

}

{
 "cases": {
 "low case": {,
 "forecasts": {
 "2022-01-01": {
 "equity":
150000.00,
 ...

 },
 ...

 }
 ...

 }

 }

}

R
eq

ue
st

R
es

po
ns

e

API tests

Manual

UI Tests

Unit tests

Unit tests

API test

Less waste

[Theory]
[InlineData("max(5, 1)", 5)]
[InlineData("max(-5, 1)", 1)]
[InlineData("max(1, 1)", 1)]
[InlineData("max(1, 5)", 5)]
[InlineData("max(-1, -5)", -1)]
public void ReturnsMaxNumber_OfGivenArguments(string expression, double
result)
 => new CalculationTestBuilder(_compiler) ...;

[Theory]
[InlineData("<syntax_error>max()</syntax_error>")]
[InlineData("<syntax_error>max(1)</syntax_error>")]
[InlineData("max(1, 2)")]
[InlineData("max(1, 2, 3, 4)")]
public void RequiresMoreThan1Argument(string expression)
 => new CalculationTestBuilder(_compiler) ...;

But...

Further from the actual user - harder to
understand whats being tested
Closer to implementation - harder for QA to write

Stability

Speed

Simpler to write
Easily put system in a
desired state, thus testing
edge cases becomes
possible

Positives

Could we do better?

API

API Test

Compiler

MAX(1, 2)

Unit test

=2

API tests

Manual

UI Tests

Unit tests

A lot of implementation

detail knowledge required

Continuous testing
From fast to continuous feedback

Development Manual Testing Dev Done

User story

Issues Days

Minutes (regression)

Automated tests

Write tests

But then, how can we have
confidence of what's

covered?

?

Still, days until we get
feedback about the

feature...

Good engineers should
always cover their work
with tests - best engineers

practice "Test Driven
Development"

P.S. We, developers,
love continuous

feedback

Development Manual Testing Dev Done

User story

Issues

Very rare

and low priority issues

Continuous feedback

Automated tests

Write tests

Tester

ReviewFeedback

Tester

Test

cases

API tests

Manual

UI Tests

Unit tests

Testers are fully integrated into
development process and sharing

their knowledge!

Also drives automated
test quality

Thank you! Benas Radzevičius
Principal Software engineer

benas.radzevicius@devbridge.com

Summary

There is no tradeoff between delivery speed and quality - you can't choose one over the
other

Optimize your test suite form End-to-end tests towards unit tests by writing more focused
and cheaper tests
Having multiple tests testing partially the same thing is a great indicator for opportunity of
optimization

Shift left quality evaluation - move it earlier in development process until you reach
continuous testing, work together with developers
Focus on quality and speed will naturally steer you towards correct test type distribution
marketed by a testing pyramid

